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A hypothesis is discussed on the connexion between control and adaptation. Control is

the form of adaptation at the level of the “collectives” essentially related to breakdown into

“passive-stable”” and “adaptive’ populations and appearing in special critical conditions.

A mathematical model of the evolutionary origin of control is proposed. The difficulties of

studying this model and the importance of the boundary cases allowing investigation by
special methods are indicated.

INTRODUCTION

THE concept of control has been widely discussed in the scientific and, in particular
the popular scientific literature. It is even difficult to list the various nuances, some
even contradictory, with which different authors surround this concept. Three main
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very extensive sets of studies exist within which the term “control” is understood quite
uniformly,

In the theory of optimum regulation the discipline, in essence purely mathematical,
there is a distinct definition of the concept of “control”. Thus, the free parameters are
called u(¢) in the set of equations determining the dependent variables x(z):

dxldt=a(x,u).

The main emphasis of this definition is the independence of the controlling parameters
u(?) of the controllable variables x (7).

Other aspects, for example, the effectiveness of control, i.e. the value of the “force”
the necessary to obtain the required result 4x are of secondary importance. The effective-
ness may in particular be as small as desired and this does not change formally the
irreproachable division of the variables into controlling and controllable.

Control in biology, and in particular, biochemistry is interpreted differently and in a
somewhat less definite manner. Instead of the term “control” often one uses the term
“regulation”” meaning the process or the result (or both) of the activity of enzyme sys-
tems of the most varied type. The emphasis of such an interpretation of control is
different. Coming to the fore here is the effectiveness of low concentrations of substance-
regulators and their specificity. It becomes impossible to insist on the strict independence
of the controlling agents and the controllable —both are concentrations of different
chemical compounds involved in the general reaction.

The concept of control has the most abstract meaning in the third group of studies,
cybernetics, where it is equivalent to the concepts ‘‘communication’ or “signal”. This
means a dual idealization. The idealization consists firstly in the assumption that the
signal causes the required change without any expenditure of energy or materials.
On the other hand, the total independence of the control from the controllable systems
is postulated. The latter abstraction is somewhat softened by introduction of the concept
of “feedback” when the action of the results of control on the subsequent signals is
assumed. Such an approach introduces (because of the superfluous rigidity of a discrete
scheme, so popular in cybernetics) a forced delay (by one “stroke’) quite unnecessary
not only in actual systems but even in other mathematical models.

The differences enumerated are quite serious. They miake doubtful the existence
of a single concept of control suitable for all applications. As with any scientific concept
the concept of control describes extreme boundary situations. In nataral science such
situations are realized only approximately. Therefore, the fundamental methodological
problem of the boundaries of applicability of the concept of “control” arises.

The problem concerns not the formal strictness of terminology. The problem of
the boundaries of applicability has a quite fundamental evolutionary form. Since the
properties of the systems which we now call “control” or “regulation’ appeared not
immediately but traversed the long path of evolutionary development then control
must have its own evolutionary precursor.

The article puts forward and argues for a hypothesis that control is the development
and extreme asymptotic form of adaptation.
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1. MATHEMATICAL MODEL

In a previous paper [1] it was shown that the concepts associated with the phenom-
enon of adaptation such as “work capacity”, “shock”, “rest”, “adjustment”, etc,
may be (in the simplest form) modelled by a system of only two equations. However,
these equations must be essentially non-linear and contain parameters necessarily
including one small parameter e.

dyldt=b(y,z,¢e, ) (1.1)
S'dZ/dI=C(y,Z,6’°‘) ' .

But as against this there are ordinary differential equations for which mathematicians
have developed a fundamental qualitative and, in part, quantitative theory.

This circummstance important for the rest of the paper may be understood by ref-
erence to another paper by the author [2]. In it, it is shown that the behaviour of
even a very complex system is sharply simplified in a critical situation. In conditions
when the system is threatened by loss of stability (in any sense whatsoever) the number
of determining variables dwindles to two (when the system passes through a complex
root, i.e. through an oscillatory regime with loss of stability) and sometimes even to
one. Therefore, the main features of the behaviour of all systems are determined not
so much by their internal structure but by the character of the critical conditions into
which these systems may fall. The hypothesis governing this paper is that control is
one of the most effective forms of adaptation at the level of “collectives”. Such biolog-
ical collectives may be tissue cultures or colonies of unicellular organisms, herds of
animals flocks of birds and the “state’ of collectivized insects.

The main step in the construction of the model is the assumption that the behav-
iour of such collectives may be modelled by a set of a large number of uniform equa-
tions:

dyldt=by(y;, z;, €, )+ OBi(Y1 ... Yps Zg ooe 2y, &) } (1.2)
edz;Jdt=c;(y;, z;, €, )+ 0C(Yy .. Vs Zg oo Zus @) |

Subscript #, is the number of the specimen, b; and ¢; descrite the behaviour of the
individual taken separately while B; and C; give the interaction of individuals with
each other and the external environment represented by the parameter a.

In this system a further small parameter J appears. Unlike &, characterizing the
internal properties of the individuals, this parameter gives the value of their interac-
tion with each other and is in a certain sense a measure of the individuality of each
individual. The corresponding large parameter

T=1/5, (1.3)

gives by order of magnitude “the lifetime” of the separate individual (measured by
the value of the characteristic cycle of vital activity).
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The model obtained is characterized by three time scales. The mean scale, time
of the order of unity corresponds to the inherent times of the vital activity of the indi-
vidual. We shall nominally cell the corresponding changes “physiological”. The small
times A7~¢ are the times of adaptive jumps in the sense in which this phenomenon
is considered in [1]. Finally, there is a large time given by formula (1.3) during which
significant changes occur for each separate individual.

2. EVOLUTION OF THE SYSTEM IN UNFAYOURABLE CONDITIONS

We shall analyse the evolution of the system (1.2) when placed in unfavourable
conditions, We shall for the time being defer the crucial problem of the relation between
the quasi-biological words written below and the mathematical model and why these
words describe something in biology. It is easiest to consider that this point contains a
separate logical model and to leave open the question of the correspondence of the
models with each other and each of them to the phenomenon to be “‘explained”.

Let the colony of individuals be in an unfavourable medium. Two modes of adapta-
tion are possible—one through increased stability, the other through increased adap-
tivity. Each of them has its own merits and drawbacks.

Increase in stability is useful to the individual in favourable conditions. However,
the colony, as a whole, will occupy a smaller area since the “‘shock’ boundary will
be the death boundary for it.

Increased adaptivity reduces the activity of each individual since part of the time
is spent by the adaptive individuals in the “shock™ state into which they enter even
in conditions favourable for more stable individuals. However, the colony of such
individuals may embrace regions absolutely unsuitable for more stable individuals.

It is worth noting that the almost obvious ideas presented here are based entirely
on the properties cf separate individuals. The interaction of individuals plays no role
in such discussion.

The next step essentially rests on interaction. We shall assume that the medium
is variable (in space or time—this is immaterial—such problems are duplicates) and
the individuals are capable cf interacting.

In this case change in the medium results in a shift in the properties of the individ-
uals either towards adaptivity or towards stability. The direction of this shift is deter-
mined by the type cf interaction.

A number of interesting problems arise. What must the interaction be for impair-
ment of the conditions to prcduce a general shift in adaptivity? Can one obtain the same
results (maintenance of the viability of the colony) through passive increase in stability?
Does the result depend on the rate of deterioration of the situation or simply on how
far the conditions are unfavourable?

It is curious that many such problems may be analyzed in an important special
case of the model when all the individuals are identical. In this case of a so-called “‘syn-
chronous™ or to be more exact “homogeneous” culture, the interaction may be taken
care of by introducing cne (or several) further variables and the problem is then that
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of investigating the qualitative behaviour of sets of 3-4 equations. Such problems
are quite amenable to modern analysis based (where necessary) on computer tech-
niques.

However, of much more interest are situations in which homogeneous colonies
cannot survive. Since homogeneous colonies are a particular case of heterogeneous
ones then variable media are known to exist fatal for homogeneous systems but in
which the existence of heterogeneous and inhomogeneous systems is possible. The
simplest type ot such a system is a colony some of whose individuals are shifted towards
adaptivity and others towards stability. If one of the populations coincides with the
whole colony then the system becomes homogeneous.

If we work close to the death boundary of homogeneous colonies then it is possible
to find conditions causing splitting of the colony into an adaptive population and a
stable population.

Such a situation is critical for the problem of the evolutionary origin of “control”
of interest to us.

3. DIFFICULTY OF PROBLEM

It is quite clear, how the problem should be further posed. It is almost obvious that
an adaptive population is a prototype of the nervous network in tissue or a population
of guard ants in an anthill. The role of signal is played by the “entry” of the adaptive
individuals into a shock state (or, on the contrary, emergence from it). However, even
withoat this we have strayed too far in speculative constructions. The ideas outlined
are not a theory and they cannot be verified. The situation is made even worse by
the fact that conflicting facts cannot be found for it. The difficulty here is of a dual
kind. Theoretical investigation of the model proposed goes beyond the bounds of
modern mathematical methods. In many cases this does not scare the investigator—
modern computing methods are so powerful that they may often replace theoretical
analysis. Unfortunately, this is not so in our case.

Simple evaluation shows the boundless scope of the problem. For the qualitative
pattern to be obtained at least in part the small parameters ¢ and é must be of the
order of one hundredth and not more.

0=0-01
e=0-01

‘We shall select a very modest colony

n=100

Thus, we obtain a set of 200 equations since two equations correspond to each indi-
vidual. Even if we confine ourselves to paired interaction and ignore its more complex
types, each of these 200 equations will contain on the right hand side 100 materially
non-linear terms.
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For comparison it is worth noting that even the more modest problem of integrating
the set of equations of celestial mechanics—nine equations for the nine planets of
the solar system—can only be done over several thousands of years.

Further calculation is impeded by the increase in the errors of rounding, “clogging”
the result. We would note that 10,000 years correspond to the time

1
T=—=100
0

since as a *‘year” in our case it is necessary to adopt the time of significant change in

the fastest variable
1=¢=001

However, in such times not only can splitting of the colony not be expected but not
even any material changes in the adaptivity of the homogeneous colony.

This crude evaluation shows just how far from quantitative investigation are even
the simplest evolutionary problems in an attempt to model them “head on” bypassing
simplifying theoretical analysis. Similar devices with exceptionally high noise level
(even the best of them do not ensure an accuracy to three symbols are absolutely unsuit-
able for such a problem. Therefore, it is not surprising that most investigations are
confined to analysis of already existing systems with control circumventing the problem
of their evolutionary origin. But even this investigation is usually based on gross simpli-
fication. For example, the approximation of the refractory medium corresponding to
the cybernetic system “‘control=signal” and taking into account only the geometry
of the system,

Of course it is quite clear that in many cases such assumptions will suffice. However,
the problem of the evolutionary origin of varied morphological structures, the con-
nexion with the traversal of the critical level in evolution and the reproduction of this
crisis situation in individual development is not only of fundamental but also practical
importance.

The present article does not seek to give an answer to the questions posed. Its terms
of reference are much more modest—to analyse the methodological roots of the abstract
nature of the approaches to the problem of control in biological systems. From the
point of view of mathematics the question is one of asymptotic problems with a small
parameter with a major derivative, it being known from the outset that no asymptotic
methods are suitable since at least a dual and even treble limiting transition is necessary.
The time (#—00) increases, the number of equations (n—o00) increases and the small
parameter also tends to zero (e—00). At best such problems are analysed with only
one limiting transition.

But if everything is so bad why write about it? The intention of the present paper
is to raise the problem. Investigation of the problem in general form is at present un-
realistic. However, often it happens that specific special problems can be integrated
(or “analysed”) by using their special properties. A good selection of such problems
sometimes replaces (in time, of course) the general theory. However, it is therefore
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very important to analyse special problems of maximum diversity—ths author still
does not know of any—making it possible to approach the general problem from
different sides.
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